CSA E0 312: Secure Computation (Aug - Dec 2019)

Instructor : Arpita Patra (Email: arpita AT iisc DOT ac DOT in )
Timings : 11 - 12:30 pm on Tuesday and Thursday.
Venue: CSA 252

Importance of the Course

The fantabulous journey of Secure Computation had originated with the seminal work of Andew Chi Chih Yao published in Foundation of Computer Science (FOCS'82). The idea of secure computation is so groundbreaking that Yao was bestowed with the prestigious Turing Award in 2000.

Course Syllabus
  • Basics: Introduction to MPC and simulation-based security model
  • Semi-Honest MPC: Secret-Sharing and BGW protocol, OT and GMW protocol, Garbling and Yao's protocol
  • Malicious MPC: Verifiable Secret Sharing; Malicious variants of BGW, GMW & Yao protocols; Byzantine Agreement and its feasibility
  • Study Material
  • Efficient Two-party Protocols- Techniques and Constructions by Carmit Hazay and Yehuda Lindell. Springer.
  • Secure Multiparty Computation and Secret Sharing - An Information Theoretic Appoach by Ronald Cramer, Ivan Damgaard and Jesper Buus Nielsen. Cambridge Press.

  • Topics for Presentation
  • Best Possible Information Theoretic MPC [Link]
  • Improved OT Extension for Transferring Short Secrets [Link]
  • A Framework for Efficient Mixed-Protocol Secure Two-Party Computation [Link]
  • Byzantine Agreement, Made Trivial [Link]
  • Scalable and Unconditionally Secure Multiparty Computation [Link]
  • How to Use Bitcoin to Design Fair Protocols [Link]
  • Optimizing Semi-Honest Secure Multiparty Computation for the Internet [Link]

    • Lecture 1 :  Introduction to MPC: Motivation and Definition
    • References: [Link]
    • Date : 08-08-2019
    • Lecture 2 :   Expanding the scope of MPC: Various Models
    • References: [Link1], [Link2]
    • Date : 13-08-2019
    • Lecture 3 :   MPC Models (Contd.) and Real/Ideal World Security Paradigm
    • References: [Link1], [Link2]
    • Date : 20-08-2019
    • Lecture 4 :   Security Definition: Deterministic and Randomized functions; Impossibility Results: i.t MPC with t ≥ n/2 and perfect AMPC with t ≥ n/4
    • References: [Link1], [Link2]
    • Date : 22-08-2019
    • Lecture 5 :   Information-Theoretic MPC with honest majority (BGW)
    • References: [Link]
    • Date : 27-08-2019
    • Lecture 6 :   Proof of BGW protocol, Oblivious Transfer, EGL Construction and its proof
    • References: [Link1, Link2]
    • Date : 29-08-2019
    • Lecture 7 :   OT Extension
    • References: [Link]
    • Date : 03-09-2019
    • Lecture 8 :   GMW Protocol
    • References: [Link]
    • Date : 05-09-2019
    • Lecture 9 :   Yao's Protocol
    • References: [Link]
    • Date : 09-09-2019
    • Lecture 1 :  Introduction to MPC: Motivation and Definition
    • References: [Link]
    • Date : 08-08-2019
    • Lecture 2 :   Expanding the scope of MPC: Various Models
    • References: [Link1], [Link2]
    • Date : 13-08-2019
    • Lecture 3 :   MPC Models (Contd.) and Real/Ideal World Security Paradigm
    • References: [Link1], [Link2]
    • Date : 20-08-2019
    • Lecture 4 :   Security Definition: Deterministic and Randomized functions; Impossibility Results: i.t MPC with t ≥ n/2 and perfect AMPC with t ≥ n/4
    • References: [Link1], [Link2]
    • Date : 22-08-2019
    • Lecture 5 :   Information-Theoretic MPC with honest majority (BGW)
    • References: [Link]
    • Date : 27-08-2019
    • Lecture 6 :   Proof of BGW protocol, Oblivious Transfer, EGL Construction and its proof
    • References: [Link1, Link2]
    • Date : 29-08-2019
    • Lecture 7 :   OT Extension
    • References: [Link]
    • Date : 03-09-2019
    • Lecture 8 :   GMW Protocol
    • References: [Link]
    • Date : 05-09-2019
    • Lecture 9 :   Yao's Protocol
    • References: [Link]
    • Date : 09-09-2019