INTRODUCTION

The standard EIG (Exponential Information Gathering) protocol for Byzantine Agreement requires exactly \(t+1 \) rounds for achieving consensus between \(n \) processors where \(n \) is the total number of processors and \(t \) is the upper bound on the total number of faulty processors. Each processor maintains its copy of EIG tree, i.e., \(F_i(0) = \emptyset \) for every nonfaulty processor \(i \).

THE PROTOCOL

The \(\Delta \)-EIG protocol(2) for a single instance of \(\Delta \)-agreement is based on some components like it operates on an EIG tree of depth \(t+1 \). A node \(v \) is committed to \(v \) if and only if the processor that \(v \) is rooted at has already detected \(v \) as faulty. By \(\Delta \)-agreement, each nonfaulty processor \(i \) has a fixed set \(F_i(0) \) of processors. If all \(n \) processors start with an initial value \(v \), then all processors that \(i \) receives \(t+1 \) values of \(\sigma \) and a set \(\{0,1\} \) and a set \(\sigma \) of initially disabled processors. If all \(n \) processors start with an initial value \(v \), then \(v \) is committed to \(v \) if \(F_i(t) = v \) for all processors \(i \) in round \(t \). The \(\Delta \)-agreement is based on some components like it operates on an EIG tree of depth \(t+1 \). A node \(v \) is committed to \(v \) if and only if the processor that \(v \) is rooted at has already detected \(v \) as faulty.

FAULT DETECTION

- **FD0:** sends ill-formatted message in round \(r \).
- **FD1:** By end of round \(r \), processor \(i \) receives \(\geq t+1 \) values of \(\sigma \), and \(z \) from distinct processors \(j \).
- **FD2:** By end of round \(r \), some node \(\sigma \), that was not closed in tree, by end of round \(r \) is committed to both 0 and 1 in tree.
- **FD3:** By end of round \(r \), some node \(\sigma \) is committed to \(v \) in tree.

RESULTS

This protocol in addition to saving in communication also allows a processor to detect failures based on data received by it and also estimate the number of disabled processors.

FUTURE WORKS

Since, it needs to relay values in the subtree rooted at \(\sigma \) for at least 2 rounds after \(\sigma \) is closed in tree, thus, \(\Delta \)-EIG protocol can be further modified to obtain an early stopping protocol called \(\Delta \)-Es protocol. This protocol would lead to further decrease in number of nodes in tree.

Applying \(\Delta \)-Es protocol, sliding-flip protocol together with monitor voting(3) would lead to fully polynomial Byzantine agreement for \(n > 3t \) in \(t+1 \) rounds.

REFERENCES